Heart Rate Classification Using Support Vector Machines
نویسندگان
چکیده
This contribution describes a classification technique that improves the heart rate estimation during hemodialysis treatments. After the heart rate is estimated from the pressure signal of the dialysis machine, a classifier decides if it is correctly identified and rejects it if necessary. As the classifier employs a support vector machine, special interest is put on the automatic selection of its user parameters. In this context, a comparison between different optimization techniques is presented, including a gradient projection method as latest development. 1 Heart rate estimation Hemodialysis is the treatment of choice for permanent kidney failure. Blood is taken from the body via an artificial vascular access and pumped through a special extracorporeal filter (dialyzer) which removes harmful wastes and excess water, see Fig. 1. A major problem in hemodialysis is the unphysiologically high rate of fluid removal from the blood compartment which leads to hypotensive crises and
منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
متن کاملPredicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملClassification of Fetal Heart Rate Using Scale Dependent Features and Support Vector Machines
One new approach for the problem of feature extraction and classification of Fetal Heart Rate signal is introduced in this paper. It considers the use of the Discrete Wavelet Transformation to extract scale-dependent features of Fetal Heart Rate (FHR) signal and the use of Support Vector Machines for classification of FHR. The proposed methodology is tested on real data acquired just before del...
متن کامل